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A b s t r a c t  

The glass transition temperature of a copolymer depends not only on chemical composition 
but also on its comonomer sequences. This experimental fact is explained by Barton's and 
Johnston's equations. Their equations, though complicated, become simple, if a suitable parame- 
ter is used to describe the eomonomer sequences. It is shown that with these new expressions, 
their equations can be used to understand glass transition temperatures of two additional types of 
eopolymers, compatible multibloek eopolymers and homopolymers with various tacticities 
treated as steric eopolymers. 
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Introduction 

An ultimate objective for polymer scientists is to understand the structure- 
property relationships of polymers. Here, we will consider a possible correla- 
tion of the glass transition temperature (Tg) of a copolymer with its chain 
structure. This means the sequences of two monomers, A and B, in a given co- 
polymer. 

There have been frequent attempts to elucidate the variation in T~ of a co- 
polymer as a function of composition, as is shown in Fig. 1. This figure shows 
that the Tg of an alternating copolymer does not lie on a line expected for the 
corresponding statistical copolymers [1]. In other words, there exists a definite 
difference in T~ between two copolymers with the same composition but differ- 
ent comonomer sequences. This fact reveals a defect in linear equations such as 

Tg = mATgA + mBT# (la) 

1/Tg = WA/TsA + WB/TgB (Ib) 
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Fig. 1 Plot of T~ vs. mMMA for styrene-methyl methacrylate (S/MMA) statistical (o) and al- 
ternating (o) copolymers and the two corresponding homopolymers (121) [1] 

Here, Tg and Tgx are the glass transition temperatures, respectively, of a given 
copolymer specified by mole fraction (m) or weight fraction (W) and of a ho- 
mopolymer of monomer X (= A or B). One can see the necessity of introducing 
the second variable which describes the comonomer sequences. 

More than twenty years ago, nonlinear equations addressing this problem 
were proposed by Barton [2] and Johnston [3]. Unfortunately, their equations 
were too complicated for practical use and have been applied only to understand 
the variation in Tg of statistical copolymers or to estimate the Tg of the alternat- 
ing copolymer in a given system. However, if a suitable parameter is used to 
describe the comonomer sequences, their equations become quite simple. Such 
expressions allow us to gain insights into their equations. 

In this article, we will extend their work by exploring the intrinsic charac- 
teristics of their equations and applying them to two types of copolymer 
originally not intended to be covered by their equations: compatible multiblock 
copolymers and homopolymers with various tacticities treated as steric copoly- 
mers. 

New expressions and characteristics of Barton's and Johnston's 
equations 

Since a given copolymer is composed of two monomers, the first way for ex- 
pressing the comonomer sequences is to take the fractions of diads into account. 
There are three different diads in a copolymer chain, AA, BB and AB (---BA), 
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so long as the direction of the chain is not important. With these diads, Barton 
and Johnston derived, respectively, the equations for the glass transition tem- 
perature of a copolymer as follows 

Tg = mAPAATsAA + m~BBTgBB + (mAPAa + m~t'BA)TgAB (B) (2a) 

1/Zg = WAPAA/TgAA + W~BB/Tgm 

+ (WAPAB + WBPBA)/TgAB ( J )  ( 2 b )  

Here, T 8 is the glass transition temperature of a copolymer with composition 
and comonomer sequences specified by the values of products mPs or WPs; Pij 
is the probability that a given I monomer is followed by a J monomer; Ts~j is the 
Tg value of the polymer composed of IJ diads only. That is, the product of 
mAPAA is equal to the mole fraction of the AA diad, mAA; similarly, 
maPBB=mBB and so on. TgAA and TgBB are the Tgs of the respective homopolym- 
ers and TgAB is the Tg of the corresponding strictly alternating copolymer. 

The parameter mu can be defined, after Barton, as the fraction of rotatable 
bonds in diad IJ. For simplicity, that is taken to be the mole fraction of diad IJ 
in this article. This means that the number of possible rotatable bonds in A 
monomer unit is assumed to be the same as that in B monomer unit and the po- 
lymerization process produces only rotatable bonds. 

Since a given A monomer must be followed by either A or B, the fraction of 
AA diads is equal to the fraction of A monomer minus the fraction of AB diads: 

mAA = mA -- mAa (3 a) 

Similarly 

mBB = rna - mBa (3b) 

We may note that every sequence of monomer A is followed by a sequence 
of monomer B, and there are, in a copolymer chain long enough, as many A 
sequences as B sequences. Those two types of sequences are linked by an AB 
or BA diad. So mBa is equal to mAa. Let us express the number of AB and BA 
bonds in the copolymer chains as that per 100 monomer units. This is called the 
run number R [4], which is equal to the percentage of sum of AB and BA diads: 

= 100 (mAB + mBA) = 200 mAB 

From Eqs 3a and 4, one obtains 

(4) 

mAA = mA - ~'/200 (5) 
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This equation explicitly shows that a diad fraction has information on both com- 
position and comonomer sequences. Substitution of Eq. (5) into Eq. (2a) yields 
[5, 6] 

Tg = mATgAA + mBTgBB + (R/100)(TgAB - 7"g) (6a) 

with 

Similarly, substitution of Eq. (5) into Eq. (2b) yields [6, 7] 

1/Tg = WA/Tg~ + WB/T~BD + (R/2OO--M) 

• + MB)/TgAB -- M A / T ~  - MB/TgBBI (6b) 

with 

M = mAMA + ~ B  

Here, Mx (X= A or B) stands for the formula weight of monomer X. The 
complicated probabilities, Pxjs, no longer appear in the equations. The h' value 
of a given copolymer can be determined by nuclear magnetic resonance experi- 
ments [8] or calculated by 

h' = 400 mAmB/(1 +[1 + 4mAmB(rArB - 1)] ~) (7) 

where rArB is the product of the monomer reactivity ratios in copolymerization. 
The R value is zero for homopolymers and 100 for alternating copolymers. 
Those of statistical copolymers vary with composition, having a maximum, 

*, at mA=0.5 for low-conversion products. Those of diblock copolymers are 
practically zero, for there is only one AB diad in a long chain. 

Since the /'gAB is often unknown, another expression of Eq. (6a) should be 
derived. For the Tg of equimolar statistical copolymer, Eq. (6) reads 

T~(mA = 0.5) = 7"~ + (R */100)(TgAB --~'g) (8) 

Elimination of Tg~ from Eqs (6a and 8) yields 

Tg = mATgAA + mBTgBB + (R /12 *)[Tg(R *) - l"g] (9) 

An expression of Johnston's equation, similar to Eq. (9) can be seen [6, 7!  
These expressions show two facts: (i) the Tg of a copolymer is a function of tv~'o 
independent variables, composition (mB = 1--mA) and the number of comonomer 
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reversals (A') and (ii) the R -dependent term is separated from the m-dependent 
ones. 

The usual plot of Tg against mB as in Fig. 1 may be considered to be a pro- 
jection of the Tg curve in three dimensions onto the Tg-mB plane. Its projection 
onto the Tg-A' plane, yielding a plot like Fig. 2a, is suitable to represent the de- 
pendence of Tg on R. Moreover, certain mathematical characteristics useful for 
data analysis may be derived from this type of plot [5]. For Johnston's equation, 
similar characteristics are found when 1/Tg is plotted vs. R [6, 7]. 
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Fig. 2 a) Schematic representation of plot of Tg vs. R, showing two characteristics of 
Eq. (6a); b) Plots of Tg vs. -R for styrene-ct-methylstyrene (S/cxMS) multiblock (zx) 
copolymers together with predictions (-  -) of Eq. (6a) for statistical (o) copolymers 

Those of Barton's equation are as follows. (i) The three points, 7"g, Tg(R *) 
and TgAB are on the same straight line and (ii) Tg values for two statistical co- 
polymers having a given value of R but different compositions deviateby an 
equal distance from this line. It is clear that the straight line connecting Tg and 
TgAB represents the Tg locus of hypothetical equimolar copolymers with varying 
degrees of comonomer alternation. The inside of the curve in Fig. 2a is the re- 
gion for blocklike copolymers: the portion of the ordinate, TgAA to TgBB, may be 
considered to represent the Tg locus of compatible diblock copolymers with 
varying degrees of composition. Barton's and Johnston's equations were origi- 
nally derived for statistical copolymers but actually cover Tg values of (compat- 
ible) multiblock copolymers as well. 

D a t a  ana lys i s  a n d  discussion 

Compatible block copolymers 

In general, blocks of a given multiblock copolymer are, like two different 
l~omopolymer chains, incompatible, forming the two-phase structure and show- 
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ing two distinct glass transition temperatures. In the literature, however, there 
are the data for styrene-cx-methylstyrene (S/ctMS) block copolymers having sin- 
gle glass transition temperatures [9, 10]. Those Tg data appear to be suitable for 
analysis. The copolymers are of the multibl0ck type: the total number of blocks 
in a chain is from 2 to 17 and theR value calculated varies from 0 to 7.2 [11]. 
The Tg data are plotted against ~' in Fig. 2b. 

In this figure, the Tg data of the corresponding statistical copolymers and ho- 
mopolymers [12] are also included and used to construct the relationship ac- 
cording to Barton's equation. The other necessary data are the values of rAra 
and TgAB. The former is 0.705 [12] and the latter can be estimated to be 406.1 K 
from the slope, (~-Tg~)/lO0, of a plot of (mAT~AA+m~Tg~B-Tg) against ~' .  

As is deduced above, it can be seen from Fig. 2b that the Tg points of mul- 
tiblock copolymers are located inside the theoretical Tg curve for the corre- 
sponding statistical copolymers. Actually, they are in the vicinity of the ordinate 
because their R values are small and close to each other. However, their Tg val- 
ues differ to a considerable extent, reflecting the differences in composition. 
Therefore, it is possible to calculate, by use of a lever rule, the composition of 
a sample from its Tg value together with two Tg values on the theoretical curve 
at the R value of the sample. 

For example, the Tg value of diblock copolymer with ms=0.53 is 412.2 K. 
The two Tg values on the curve a tR=0  are 380 K (ms= 1.0) and 453 K (ms=0) 
[12]. In order to check on consistency, the composition of this diblock copoly- 
mer can be estimated from the three Tg values to be ms=0.56. This is in good 
accord with the experimental value. Similar agreement can be seen for the data 
of the multiblock copolymers as well [I 1]. The new expressions of Johnston's 
equation can also be used for the sample purpose. 

Homopolymers with various tacticities 

According to Bovey [13], tacticity is represented by the relative configura- 
tion of pairwise units, meso (m) and racemo (r). A part of a given structure is 
shown below. 

C C C C 
i l [ l 

C--C--C--C--C~C--C--C--C--C 
t 

m m r C r 

I H S 

Three types of sequences which can be seen above, mm, mr and rr, are called, 
respectively, isotactic (/), heterotactic (H) and syndiotactic (S) triads. These tri- 
ads correspond to AA, AB and BB in ordinary copolymers. So, like co- 
monomer arrangement, homopolymer tacticity can be treated by the statistics of 
reaction probability [14]. 
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Homopolymers including these triads may be called steric copolymers. 
Equations 2a and b can be applied to such homopolymers by simply replacing 
AA with mm,  i.e., 1 and so on. 

Tg = 1T~I + STss + HTga (10a) 

1/Tg = I /Tr  + S/T~s + H/Tca (lOb) 

Here, T s is the T 8 value of homopolymer having the tacticity specified by I, S 
and H. TgK ( K = I ,  S or H) is the T 8 value of pure K-tactic form. The mole frac- 
tion of I triad is written as I itself as usual, the sum of I, S and H being unity. 
It is not necessary to distinguish between weight and mole fractions in this case. 
With these equations, the dependence of Tg of poly(methyl methacrylate) 
(PMMA) on tacticity will be considered. Before applying them to T8 data, let 
us derive new expressions of Eqs (10a and b). Since 

m = l + H/2  and r = S + H/2  

Equations (10a and b) can be written as 

1"8 = (1 - r)Tr + rT~s + H[T~ H - (T~j + Tgs)/2] (1 la) 

1/Tg = (1 - r)/Tgl + r/Tgs + HI1 / T w  - (l/Tgi "Jr 1/Tgs)/2] (1 lb) 

These expressions correspond, respectively, to Eqs (6a and b). In order to 
determine the dependence of glass transition temperature on tacticity, plots of 
Tg vs. r (= I-m) have repeatedly been made. Equation 1 la implies, however, 
such a plot cannot be linear: the deviations from the linear relation are always 
expected due to the third term. As the three Tss are constant, the deviation is 
seen to be proportional to the value of H in each sample. So it is not sensible to 
make an ordinary plot of Tg against r. 

In Eq. (10) T~, I, S and H are observables. In addition, both T~I and T~s can 
be determined, for it is possible to prepare PMMA molecules in almost pure 
tactic forms. The following values are used below: 315.2 K for TsI and 400.2 K 
for Tss. So the only unknown is Tga, and Tg value of the heterotactic polymer 
specified by the sequence of strict alternation of m and r. This quantity can be 
estimated from the plot shown in Fig. 3a. This plot is based on Eq. (10b): the 
slope of the linear line passing through the origin is the reciprocal of T~I. The 
used Tg data of various types of PMMAs prepared with various catalysts are 
listed in Table 1 [15-18]. From this plot, the TgH was estimated to be 400.1 K. 
Similarly, a plot based on Eq. (10a) yields a value of 390.7 K for Tsri. 

Now the experimental T 8 values can be compared with those calculated by 
Eq. (10). These are given in the last two columns of Table 1. Good agreement 
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Table 1 Tacticity data and observed and predicted glass transition temperatures of various types 
of PMMA samples 

Sample Triads/% Tg/K 

I S obs. Eq.(10a) Eq.(10b) 

1" 99 0 315.9 315.9 315.9 

2 81 5 336.7 329.7 328.3 

3 80 7 336.2 330.7 329.0 

4 67 15 344.5 341.2 338.7 

5 62 17 340.6 345.1 342.6 

6 57 24 350.3 349.6 346.6 

7 38 30 364.2 364.2 362.5 

8 28 36 372.3 372.2 371.5 

9* 7 62 389.9 390.7 392.2 

10" 7 62 391.7 390.7 392.2 

11" 4 65 397.5 393.2 395.4 

12" 0 94 398.8 399.5 400.1 

13" 0 94 396.6 399.5 400,1 

14" 6 43 388 390.8 395.0 

15" 3 65 394 393.9 396.4 

* Close  to Bernoullian and denoted by solid circles in the figure. 
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Fig. 3 a) TgH determination based on Eq~ (10b) and two Tg values: Tgt=315.2 K and 
Tgs=400.2 K, (e) close to Bernoullian and (o) deviated from Bernoullian PMMAs; 
b) Plot of Tg against S for various types of PMMAs together with theoretical predic- 
tions by Eq. (10b) for Bernoullian ( - - )  and stereobloek ( - .  -) PPMAs 
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is seen, with some exceptions, for all the samples, regardless of the differences 
in preparation. This means that there is a one-to-one correspondence between 
the Tg of PMMA and a set of its triads. The exceptions are isotactic samples 2 
to 5. Since Tgi is markedly lower than Tgs and Tgi~ and the latter are more or less 
equal, it is clear that errors in the determination of tacticity have a bigger influ- 
ence on the T~ values of isotactic samples. 

It was understood that Eq. (10) can be applied to describing the dependence 
of Tg of homopolymers on tacticity. These Tg data are plotted against S in 
Fig. 3b. Before looking at the experimental points, we will consider theoretical 
predictions for some cases. A solid line, based on Eq. (10b), is for a simple 
case of polymerization kinetics, assuming that the configuration of an adding 
monomer unit is independent of that of the growing chain. These polymers are 
called Bernoullian, whose triad fractions can be expressed as 

l = ( 1 - r )  2, H = 2 r ( 1 - r ) ,  S = r  z (12) 

Thus, the solid line in Fig. 3b is the Tg locus of Bernoullian PMMAs. Dash-dot 
lines and the ordinate are the boundaries: I=0,  H=0  and S=0. The dash-dot 
lines for I=0  and H=0  represent, respectively, the Tg loci of H - S  and I -S  
stereoblock polymers with varying degrees of S. The Tg data of all types of 
PMMAs must be inside the triangle defined by these three line segments. The 
data are located in the triangle, butthey do not fit a single curve. Filled circles 
are close to the solid line, while open circles are not. 

This is quite natural. A big difference between tactic polymers like PMMAs 
and ordinary statistical copolymers must be recognized. The comonomer se- 
quences of the latter is governed, as can be seen from Eq. (7), by a single pa- 
rameter rArB. It is impossible, however, to prepare PMMA molecules with 
various tacticities under specific polymerization kinetics. We recall the finding 
of Bovey and Tiers that free radical PMMA molecules are Bernoullian but an- 
ionic PMMA molecules are not [19]. This figure confirms their finding only in 
a different way. 

In this discussion, we tried to understand the relationship of glass transition 
temperature of a copolymer with its comonomer sequences. As a theoretical ba- 
sis, Barton's and Johnston's equations were used. Although they are known to 
be useful for ordinary copolymers, both equations were found to be applicable 
to compatible multiblock copolymers and steric copolymers like PMMA, pro- 
viding further understanding of the Tg~ of these types of copolymers. 

So far, the glass transition was implicitly assumed to be a property deter- 
mined primarily by intramolecular interactions. And we did not ask why, for in- 
stance, TV.B becomes smaller than Tg(R') in the case shown in Fig. 1. An 
answer could be found from a consideration based on the actual molecular 
structure of comonomer sequences. Such conclusions have already been pub- 
lished, for several copolymer systems including tactic PMMAs, by Tonelli [20]. 
The question of which theory is more valid, Barton's (conflgurational entropy 
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theory) or Johnston's (free-volume theory), still remains unsettled, however. 
This problem is now under intensive investigation by use of the copolymer sys- 
tems whose Ts~  values predicted are markedly different from each other [6]. 
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